
www.manaraa.com

NetSolve: A Network Serverfor Solving Computational Science ProblemsHenri Casanova� Jack Dongarra?yNovember 27, 1995AbstractThis paper presents a new system, called NetSolve, that allows users to access computational re-sources, such as hardware and software, distributed across the network. This project has been motivatedby the need for an easy-to-use, e�cient mechanism for using computational resources remotely. Easeof use is obtained as a result of di�erent interfaces, some of which do not require any programminge�ort from the user. Good performance is ensured by a load-balancing policy that enables NetSolve touse the computational resource available as e�ciently as possible. NetSolve is designed to run on anyheterogeneous network and is implemented as a fault-tolerant client-server application.KeywordsDistributed System, Heterogeneity, Load Balancing,Client-Server, Fault Tolerance, Linear Algebra, Virtual Library.University of Tennessee - Technical report No cs-95-313
�Department of Computer Science, University of Tennessee, TN 37996yMathematical Science Section, Oak Ridge National Laboratory, Oak Ridge, TN 37831

www.manaraa.com

1 IntroductionAn ongoing thread of research in scienti�c computing is the e�cient solution of large problems. Variousmechanisms have been developed to perform computations across diverse platforms. The most commonmechanism involves software libraries. Unfortunately, the use of such libraries presents several di�culties.Some software libraries are highly optimized for only certain platforms, but do not provide a convenientinterface to other computer systems. Other libraries may demand considerable programming e�ort from auser, who may not have the time to learn the required programming techniques. While a limited number oftools have been developed to alleviate these di�culties, such tools themselves are usually available only ona limited number of computer systems. MATLAB (see [1]) is an example of such a tool.These considerations motivated the establishment of the NetSolve project. NetSolve is a client-server appli-cation designed to solve computational science problems over a network. A number of di�erent interfaceshave been developed to the NetSolve software, so that users of C, Fortran, MATLAB, or the Web can easilyuse the NetSolve system. The underlying computational software can be any scienti�c package, therebyensuring good performance results. Moreover, NetSolve uses a load-balancing strategy to improve the use ofthe computational resources available.This paper introduces the NetSolve system, its architecture and the concepts on which it is based. Wethen describe how NetSolve can be used to solve complex scienti�c problems. Our focus is on linear algebraproblems, but we emphasize that the NetSolve project easily can be extended in order to solve many classesof problem. For instance, it would be straightforward to use NetSolve for image processing or for PDEs forinstance.2 The NetSolve SystemThis section presents a short description of the NetSolve system and discusses how users can exploit thesystem for complex problem solving.2.1 ArchitectureThe NetSolve system is a set of loosely connected machines. By loosely connected, we mean that thesemachines can be on the same local network or on an international network. Moreover, the NetSolve systemcan be heterogeneous, which means that machines with incompatible data formats can be in the system atthe same time.The current implementation sees the system as a completely connected graph, without any hierarchicalstructure. This initial implementation was adopted for simplicity. We expect, however, that in order tomanage e�ciently a pool of hosts scattered on a large-scale network, future implementations will providegreater structure (e.g., a tree structure) which will limit and group large-range communications.Figure 1 shows the global conceptual picture of the NetSolve system. In this �gure, a NetSolve client send arequest to the NetSolve agent. The NetSolve communication servers are the e�ective implementations of theNetSolve agent for now. The agent choses the \best" NetSolve resource, which is a NetSolve computationalserver. For more details on this choice made by the communication server, see section 4.Every host in the NetSolve system runs a NetSolve server. We distinguish two types of server: computationaland communication servers. A computational server is a NetSolve resource as seen in �gure 1. A commu-nication server is an instance of the NetSolve agent. A good implementation would be to have a NetSolveagent on every local network where several clients are sending request to NetSolve. Of course this is notmandatory and the NetSolve system may contain only one instance of the agent.An important aspect of this server-based system is that each instance of the agent has its own view of thesystem. Therefore, some agents may be aware of more details than are others, depending on their locations.But eventually, the system reaches a stable state in which every agent possesses all the available informationon the system (provided the system does not undergo never-ending modi�cations).2

www.manaraa.com

NetSolve Client NetSolve Agent

NetSolve System

Request

ChoiceReply

Resource
NetSolve

Figure 1: The NetSolve SystemFrom now on, we will use the term agent, agent instance or communication server to design the �rst processcontacted by a client when sending as request.2.2 NetSolve ManagementNetSolve is a fully distributed system and as such needs special features that make its management safe andeasy.Modifying the system. A prerequisite of a distributed system is that it should be able to evolve safelyand as easily as possible. To this end, we have designed NetSolve so that new servers can be added at anytime. A new server must �rst contact any other server already in the system in order to obtain its ownview of the system. Then it broadcasts its existence to all the servers of which it is aware, and becomes anindependent entity. (Again, the current implementation is completely nonhierarchical.)In the same vein, it is possible to remove servers from the system at any time, and to restart them if necessary,without modifying the system behavior.Interactive managing. To manage such a distributed system, we developed an interactive tool thatenables the NetSolve manager to get information about the system and to modify it dynamically. Thistool provides a telnet-like interface through which a user can get data about the con�guration, such as thenumber of participating servers and their characteristics, the number of problems solvable, and the serverson which such problems can be solved.The following command line, for instance, gives the list of all the servers in the NetSolve system, as it is seenby the server on the host jupiter.NetSolve jupiter > list sv 3

www.manaraa.com

3 NetSolve servers in the system known by jupiter :-----------------> earth (128.145.32.234) (agent)--> jupiter (132.111.21.134) (resource)--> saturn (124.122.23.210) (resource)The tool also provides statistics such as the number of problems solved on a given server, the number ofrequests processed by an instance of the agent or that date at which a server has been started.Appendix D shows brie
y how to add servers to the NetSolve system.2.3 Protocol ChoicesThe communication within the NetSolve system is achieved by means of the socket layer. We chose to use theTCP/IP protocol because it ensures a reliable communication between processes. (The fact that a processis limited to a certain number of simultaneous TCP connections was not a problem, given the NetSolvespeci�cation.)To ensure the possible use of an heterogeneous environment, NetSolve uses the XDR protocol between hostsof incompatible data format. Actually, this is the default protocol before two hosts agree that they use thesame data format.3 InterfacesOne of the main goal of NetSolve is to provide the user with the largest number of interfaces and to keepthem as simple as possible. We describe here two di�erent kinds of interface: interactive and programminginterfaces.3.1 Interactive InterfacesInteractive interfaces o�er several advantages. First, they are easy to use because they completely free theuser from any code writing. Second, the user still can exploit the power of software libraries. Third, theyprovide good performance by capitalizing on standards tools like MATLAB. Let us assume, for instance,that MATLAB is installed only on one machine on the local network. It is possible to run NetSolve viaMATLAB on this machine and in fact use the computational power of another machine where MATLAB isnot available.The current implementation of NetSolve comprises three interactive interfaces.3.1.1 The MATLAB InterfaceHere is an example of the MATLAB interface to solve an eigenvalues computation :>> A = rand(100,100)>> [real imaginary] = netsolve('DEig',A)This Matlab script �rst creates a random 100� 100 matrix, A. The call to the netsolve function returnswith the solution in the vectors real and imaginary, which contains the real parts and imaginary parts ofthe eigenvalues of matrix A. The call to netsolve manages all the NetSolve protocol, and the computationmay be executed on a remote host. 4

www.manaraa.com

3.1.2 The Shell InterfaceWe also developed a shell interface. Here is the same example as above, with the shell interface :earth % netsolve DEig mat real imaginaryHere, mat, real, and imaginary are �les. This interface is slightly di�erent from the MATLAB interfacebecause the call to netsolve does not make any di�erence between inputs and outputs. The di�erence ismade internally, and it is the user's responsibility to know the correct number of parameters. (This numbercan be obtained from the interactive tool we have developed for NetSolve (see 2.2).3.1.3 The Graphic InterfaceThe last of our interactive interfaces is a very attractive one. We developed it with TK/TCL. The aspectof this interface is given in Appendix A. This graphic interface is perhaps the simplest to use. It has beenbuilt on top of the shell interface described in the preceding paragraph.3.2 Programming InterfacesIn addition to interactive interfaces, we developed two programming interfaces, one for Fortran and one forC. Unlike the interactive interfaces, programming interfaces require some programming e�ort from the user.But again, with a view to simplicity, the NetSolve libraries contain only a few routines, and their use hasbeen made as straightforward as possible.A new feature in these interfaces is that they allow the user to call NetSolve asynchronously. By this wemean that it is possible to post a request to NetSolve, go on with other computation or other requests,and poll for the results later. This asynchronous system has two important reasons. First, it allows theusers within their programs to overlap a NetSolve computation by their own computation. Second, it allowsthe NetSolve system to perform the computation in parallel on di�erent computational servers, by sendingseveral NetSolve requests in a row (see 7).The NetSolve libraries also provide other functions. For example, they enable the user to contact a NetSolveserver in order to obtain some useful informations, as the number of parameters for a given problem.Simple examples of the C and Fortran interfaces can be found in Appendix B and C.4 Load Balancing in NetSolveLoad balancing is one of the most attractive features of the NetSolve project. Since NetSolve performs thecomputations over a network containing a large number of machines with di�erent characteristics, it seemslogical to think that one of these machines is the most suitable for a given problem.Before we consider how NetSolve tries to guess which machine is to be chosen, let us examine what criteriadetermine the best machine.4.1 Calculating the Best MachineThe hypothetical best machine is the one yielding the smallest execution time T for a given problem P .Therefore, we have to compute an estimate of this time on every machine M in the NetSolve system.Basically, we split the time T in Tn and Tc, where� Tn is the time to send the data to M and receive the result over the network, and� Tc is the time to perform the computation on M .The time Tn can be computed knowing the 5

www.manaraa.com

0 100 200 300 400 500 600 700
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

workload

p
/P

RS6000 (1 processor)

0 200 400 600 800 1000 1200
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
SPARC−Server (4 processors)

workload

p
/P

Figure 2: p=P versus workload1. network latency and bandwidth between the local host and M ,2. size of the data to send, and3. size of the result to receive.The computation of Tc involves the knowledge of the1. size of the problem,2. complexity of the algorithm to be used, and,3. performance of M , which depends on� the workload of M and� the raw performance of M .4.2 Theoretical ModelWe have developed a simple theoretical model enabling us to assess the performance, given the raw perfor-mance and the workload. This model gives the actual performance, p, as a function of the workload, w; theraw performance, P ; and the number of processors on the machine, n:p = P � 100� n100� n+max(w � 100� (n� 1); 0)To validate this model, we performed several experiments. The results of the experiments are shown inFigure 2, which shows the ratio p=P versus the workload of the machine. Each measure gave one of the \+"6

www.manaraa.com

marks. We then computed the mean of all the measures for every value of the workload. An asymptoticinterpolation of these mean values is shown with a continuous curve. Our theoretical model is shown withthe dashed line.In Figure 2-(a), we can see that the theoretical model is very close to reality. In Figure 2-(b), since themachine has four processors, the beginning of the curve is a
at line, and the performance begins to dropwhen the four processors are loaded. Our model is less accurate and always optimistic because it does nottake into account any operating system delay to manage the di�erent processors. The chaotic behavior ofthe four-processor machine comes from the fact that the operating system makes some process migrationsbetween the processors.4.3 Computation of TThe computation of T takes place on a communication server for each problem request and for each com-putational server M . This computation uses all the parameters listed above. We distinguish three di�erentclasses of parameter:� The client-dependent parameters1. The size of the data to send2. The size of the result to receive3. The size of the problem� The static server-dependent parameters1. The network characteristics between the local host and M2. The complexity of the algorithm to be used on M3. The raw performance of M� The dynamic server-dependent parameters1. The workload of MThe client-dependent parameters are included in the problem request sent by the client to the communicationserver. Their evaluation is therefore completely straightforward. The static server-dependent parameters aregenerally assessed once, when a new server contacts the other NetSolve servers already in the con�guration.Network characteristics. The network characteristics are assessed several times, so that a reasonableaverage value for the latency and bandwidth can be obtained. We still call them static parameters, however,since they are not supposed to changed greatly once their mean value has been computed.Complexity of the algorithm. When a new computational server joins the NetSolve system, it poststhe complexity of all of its problems. This complexity does not change thereafter, since it depends only onthe software used by the computational server.Raw performance. By raw performance, we mean the performance of the machine with no other processusing the CPU. Its value is determined by each computational server at startup time. We use the LINPACKbenchmark to obtain the K
op/s rate. The LINPACK benchmark computes the \user time" for its run, andtherefore corresponds to our de�nition of raw performance.7

www.manaraa.com

4.4 The Workload InformationWorkload parameters are the only dynamic server-dependent parameters required to perform the compu-tation of the predicted execution time T . The strategy described above for getting the present workloadof every computational server when computing T is absolutely out of the question. Indeed, each problemrequest would involve a huge number of communications within the NetSolve system, and would thereforebe highly ine�cient.Instead, each communication server possesses a cached value of the workload of every computational server.By cached, we mean that this value is directly used for T 's computation and that it is only updated periodi-cally. Admittedly, this value may be out of date and lead to a wrong estimate of T . Nevertheless, we believethat it is better on the average to take the risk of having a wrong estimate than to pay the cost for gettingan accurate one.We emphasize that we have tried to make this estimate as accurate as possible, while minimizing the costof its computation. Figure 3 shows the scheme we used to manage the workload broadcast.

0

100

200

300

0 5 10 15

W
o

rk
lo

a
d

Confidence Interval

time slice

Time Units

Workload Broadcast

Workload

X
Confidence Interval

View from the "outer world"

Width of the

X

Figure 3: Workload Policy in NetSolveLet us consider a computational server M and a communication server C. C performs the computation of Taccording to the last value of M 's workload it knows. M broadcasts its workload periodically. In Figure 3,we call time slice the delay between to workload broadcast fromM . This �gure shows the workload functionof M versus the time. The simplest solution would be to broadcast the workload at the beginning of eachtime slice. But experience proves that the workload of a machine can stay the same for a very long time.Therefore, most of the time, the same value would be broadcast again and again over the network. To avoid8

www.manaraa.com

this useless communication, we chose to broadcast the workload only when it has signi�cantly changed.In the �gure, we see some shaded areas called the con�dence interval. Basically, each time the value of theworkload is broadcast, the NetSolve computational server decides that the next value to be broadcast shouldbe di�erent enough from the last broadcast one|in other words, outside this con�dence interval. In the�gure, the workload is broadcast three times during the �rst �ve time slices.Two parameters are involved in this workload management: the width of a time slice and the width of thecon�dence interval. These parameters must be chosen carefully. A time slice that is too narrow causes theworkload to be assessed often, which is very costly in term of CPU cycles. We have to remember that aNetSolve server is supposed to run on a host for a long period of time; it is impossible to let it monopolize alot of CPU time. The width of the con�dence level must also be considered carefully. A narrow con�denceinterval causes a lot of useless workload broadcasting, which is costly in term of network bandwidth.Choosing an e�ective time slice and con�dence interval serves another function. It helps to make theworkload information on the communication servers as accurate as possible, so that the estimated value ofT is reasonable.We emphasize that experimentation is needed to determine the most suitable time slice and con�denceintervals.5 Fault ToleranceFault tolerance is an important issue in any loosely connected distributed system like NetSolve. The failureof one or more components of the system should not cause any malfunction. Moreover, the number of sidee�ects generated by such a failure should be as low as possible and minimize the drop in performance.Fault tolerance in NetSolve takes place at di�erent levels. Here we will justify some of our implementationchoices.5.1 Failure DetectionFailures may occur at di�erent level of the NetSolve protocols. Generally they are due to a network malfunc-tion, to a server disappearance, or to a server failure. A NetSolve process (i.e., a client, a server, or a utilityprocess created by a server) detects such a failure when trying to establish a TCP connection with a server.The connection might have failed or have reached a timeout before completion. In this case, this NetSolveprocess reports the error to the closest NetSolve server. (A client would report to its default communicationserver, a utility process to the server that created it.) The server would simply take the failure into account.One of the prerequisites for NetSolve was that a server can be stopped and restarted safely. Therefore, allthe error reports contain information to determine whether the server was restarted after the error occurred.Indeed, since NetSolve can be used over a very spread-out network, some old failure reports may very likelyarrive after the server that failed has been restarted. The current policy ensures that a running server willnot be seen as stopped by other servers. In other words, a NetSolve can be stopped and restarted safely.When a server takes a failure into account, it marks the failed server in its data structures and does notremove it. A server will be removed only after a given time, and only if it has not been restarted.5.2 Failure RobustnessAnother aspect of fault tolerance is that it should minimize the side e�ects of failures. To this end, wedesigned the client-server protocol as following. When a NetSolve server receives a request for a problem,it sends back a list of computational servers sorted from the most to the least suitable one. The client triesall the servers in sequence until one accepts the problem. This strategy allows the client to avoid sendingmultiple requests for the same problem if some computational servers are stopped. If at the end the list noserver has been able to answer, the client asks another list from the communication server. Meanwhile, ithas reported all these failures and will thus receive a di�erent list.9

www.manaraa.com

Once the connection is established with a computational server, there is no guarantee that the problem willbe solved. The computational process on the remote host can die for some reason. In that case, this failureis detected by the client, and the problem is sent to another available computational server. This process istransparent to the user but, of course, lengthens the solve time. The problem is migrated among the possiblecomputational servers until it is solved or no server remains.5.3 Taking Failures into AccountWhen a failure occurs, the communication servers update their view of the NetSolve system. The communi-cation servers keep track of the status of the remote hosts: reachable, or unreachable. They also keep trackof the status of the NetSolve servers on these hosts: running, stopped, or failed. When a host is unreachableor a NetSolve server is stopped for more than 24 hours, the communication servers erase the correspondingentry in their view of the NetSolve system.The communication servers also keep track of the number of failures encountered when using a computationalserver. Once this number reaches a limit value, the corresponding entry is removed. Therefore, if a com-putational server is poorly implemented, for instance because it calls a library incorrectly, it will eventuallydisappear from the system.6 Linear Algebra IssuesNetSolve will deal with a large number of di�erent computational problems. Here we focus on linear algebraproblems.We begin by giving a general de�nition for any arbitrary linear algebra problem. We de�ne a problem as a7-uple: < name;m; v; s;M; V; S >,where� name is a character string;� m, v and s are the numbers of matrices, vectors, and scalars in input to the problem; and� M , V and S are the numbers of matrices, vectors, and scalars in output to the problem,To distinguish the di�erent data types, we use the �rst character of the problem name, in the same way asit is done in LAPACK ([2]):� S for real single precision� D for real double precision� C for complex simple precision� Z for complex double precisionFor instance, we could de�ne a double-precision linear system solve as < "DAx = b"; 1; 1; 0; 0; 1;0 >. Thisde�nition allows to keep NetSolve as general purpose as possible in a linear algebra context. Some examplesare given in 3.1.1. 10

www.manaraa.com

6.1 Scienti�c PackagesNetSolve is able to use any scienti�c linear algebra package available on the platforms it is installed on,provided that the above formalism remains valid. This allows the NetSolve administrator not only to choosethe best platform on which to install NetSolve, but also to select the best packages available on the chosenplatform.The current implementation of NetSolve at the University of Tennessee uses the BLAS (see [3], [4] and [5])and LAPACK ([2]). These packages are available on a large number of platforms and are freely distributed.The use of ScaLAPACK ([6]) on massively parallel processors would be a way to use the power of high-performance parallel machines within NetSolve.7 PerformanceOne of the challenges in designing NetSolve was to combine ease of use and excellence of performance. Severalfactors ensure good performance without increasing the amount of work required of the user. In additionto the availability of diverse scienti�c packages (as discussed in the preceding section), these factors includeload balancing and the use of simultaneous resources.� Load balancing. Given all the computational resources available, NetSolve provides the user with a\best e�ort" to �nd the most suitable resource for a given problem.� Simultaneous resources. Using the programming interfaces to NetSolve, the user can write a NetSolveapplication that has some parallelism. In Figure 4, we see the results of experiments conductedon a local network of SPARC workstations. The NetSolve program kept sending requests so thatten 600 � 600 eigenvalues problems were solved simultaneously over the network. We also addedcomputational servers to the NetSolve con�guration while running this program. Figure 4 shows theexecution time for each problem for each experiment.As expected, the problems are solved simultaneously on di�erent servers, and the average execution time forone problem decreases when the number of computational servers increases.8 Adding New Problems to a NetSolve ServerPart of our design objective was to ensure that NetSolve have an extensive application range. Thus, it hadto be possible to add new problems to a computational server. Since it is unthinkable to have the NetSolveadministrator modifying the NetSolve code itself for each new addition, we developed a simple tool to handlethe task. The input for this tool is a con�guration �le describing each problem; the output is the actualC code of the computational process in charge of the problem solving. Thus, new problems can be addedwithout having to be concerned about the NetSolve internal data structure.In its �rst version, this pseudo-compiler still requires some e�ort from the NetSolve administrator. In fact,since any kind of library is supposed to be used within NetSolve, we cannot completely free the administratorfrom code writing. But we can provide him with a simple and e�cient way of accessing the parameters tothe problem. In particular, the function calls to the library have to be written in C, using a prede�ned setof macros. An example of the formal description of a problem is given in Appendix E.More details on this set of macros and on the way to use them will be available as soon as the compilerreaches a stable development status.9 Future WorkThe initial NetSolve system is bound to undergo numerous modi�cations.11

www.manaraa.com

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350
600x600 EigenValues Problems

Experiment #

S
o

lv
e

 t
im

e
 (

s
e

c
)

1
 s

e
rv

e
r

2 servers

3 servers

4 servers

Server addition

Figure 4: Simultaneous request to an evolving NetSolve systemThe load-balancing strategy needs to be improved in order to change the \best guess" into a best \choice"as much as possible. The challenge is to come close to a best choice without
ooding the network. Indeed,the danger is to waste more time computing this best choice than the computation would have taken in thecase of a best guess only.We also have to increase the number of interactive interfaces. For instance, we could write Maple andMathematica interfaces, similar to the MATLAB one. Currently, we are thinking of providing the user witha HotJava interface on Solaris systems. Such an interface could be even easier to use than the MATLABinterface.Another way to improve NetSolve is to extend it to a wider class of problems (i.e., beyond linear algebra).Indeed, any problem that can be expressed in terms of matrices, vectors, and scalars can be solved by aNetSolve computational server. For instance, it would be straightforward to interface NetSolve with animage-processing library.All these improvements are intended to combine ease of use and performance, the main purpose of theNetSolve project.
12

www.manaraa.com

A The GUI to NetSolve

Figure 5: The NetSolve TK/TCL interface main window
Figure 6: The NetSolve TK/TCL interface solve window13

www.manaraa.com

B Example: The NetSolve C Interface......double A[100*100]; /* Matrix A */double Real[100],Imaginary[100]; /* real and imaginary parts of A's eigenvalues */int request; /* NetSolve request number */int is_finished; /* Flag giving the computation status */int n_b;/**************************************//* Blocking call *//**************************************/request = netsolve("DEig", /* Eigenvalues problem */A,100,100, /* One matrix in input : A 100x100 */Real,&n_b,Imaginary,&n_b); /* Two vectors in output : *//* Real 100 and Imaginary 100 *//**************************************//* Asynchronous call *//**************************************/request = netsolve_nb("DEig",A,100,100,Real,&n_b,Imaginary,&n_b);...... /* Some computations */...is_finished = netsolve_get(request,PROBE); /* poll the previous request */...... /* Some computations */...is_finished = netsolve_get(request,WAIT); /* poll in a blocking fashion */
14

www.manaraa.com

C Example: The NetSolve Fortran Interface...... INTEGER LDA,NPARAMETER(LDA = 100, N = 100)DOUBLE PRECISION A(LDA,N)DOUBLE PRECISION R(N),I(N)INTEGER REQUEST,BNINTEGER ISREADYCALL FNSINIT()************************************ Blocking Call ************************************CALL FNSOLVE('DEig',REQUEST,$ A,LDA,M,N,R,BN,I,BN)************************************ Asynchronous Call ************************************CALL FNSOLVE_NB('DEig',REQUEST,$ A,LDA,M,N,R,BN,I,BN)...... * Some computations *... CALL FNSGET(REQUEST,PROBE,ISREADY)...... * Some computations *... CALL FNSGET(REQUEST,WAIT,ISREADY) 15

www.manaraa.com

D Adding resources to NetSolveLet us �rst start a NetSolve agent on our network :earth % netsolve_agent &NetSolve Agent startingNetSolve Agent runningearth %Now that the agent is running, we can start resources. To start a computational server we need a con�guration�le containing information about the problems solvable by the new resource. We need also to specify thename of a machine running a NetSolve agent. This agent is the entry point into the system, and any agentcan be chosen. Starting a resource on saturn is done below :saturn % netsolve_resource -f file -a earth &NetSolve resource startingProblems initializingContacting agent on earthNetSolve resource integrated in NetSolve systemsaturn %We can now check the status of the system with the interactive tool described in section 2.2NetSolve earth > list sv2 NetSolve servers in the system known by jupiter :-----------------> earth (128.145.32.234) (agent)--> saturn (124.122.23.210) (resource)NetSolve earth >As shown above, it is very easy to add resources. The only pre-requisite is to know the name (or IP-address)of a machine running a NetSolve agent.
16

www.manaraa.com

E Formal Description of the LAPACK Dgeev Function## Dgesv#@PROBLEM ** Beginning of a problem section **@NAMEDgesv@DESCRIPTIONLinear system solve (from LAPACK)@INPUT ** Number of matrices, vectors and scalars in input **110@OUTPUT ** Number of matrices, vectors and scalars in output **010@COMPLEXITY ** Complexity of the algorithm : 1xn^3 **31@LANGUAGE ** Language of the target library **FORTRAN@FUNCTIONdgesv ** Name of the function to call **@CODE ** Beginning of the CODE section **int nrhs = 1;int info;int *ipiv=NULL;if (*@nIV0@ != *@mIM0@)return BAD_DIMENSION; * Dimension mismatch **@nOV0@ = *@nIV0@;ipiv = (int *)malloc(sizeof(int)*(*@nIV0@));dgesv(@mIM0@,&nrhs,@IM0@,@mIM0@, * Call to the function *ipiv,@IV0@,@nIV0@,&info);@OV0@ = @IV0@;if (ipiv != NULL)free(ipiv);if (info >0)return NO_SOLUTION; * No solution to the problem *if (info <0)return LINEAR_FAILED; * Failure !! *@END_CODE ** End of the CODE section **17

www.manaraa.com

References[1] Inc The Math Works. MATLAB Reference Guide. 1992.[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKen-ney, S. Ostrouchov, and D. Sorensen. LAPACK Users' Guide. SIAM Philadelphia, Pennsylvania, 2 edition, 1995.[3] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subprograms for fortran usage. ACMTransactions on Mathematical Software, 5:308{325, 1979.[4] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. An extended set of fortran basic linear algebrasubprograms. ACM Transactions on Mathematical Software, 14(1):1{32, 1988.[5] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A set of level 3 basic linear algebra subprograms. ACMTransactions on Mathematical Software, 16(1):1{17, 1990.[6] J. Dongarra and D. Walker. Software libraries for linear algebra computations on high performance computers.SIAM Review, 37(2):151{180, 1995.

18

